Attribute Discovery via Predictable Discriminative Binary Codes

نویسندگان

  • Mohammad Rastegari
  • Ali Farhadi
  • David A. Forsyth
چکیده

We present images with binary codes in a way that balances discrimination and learnability of the codes. In our method, each image claims its own code in a way that maintains discrimination while being predictable from visual data. Category memberships are usually good proxies for visual similarity but should not be enforced as a hard constraint. Our method learns codes that maximize separability of categories unless there is strong visual evidence against it. Simple linear SVMs can achieve state-of-the-art results with our short codes. In fact, our method produces state-of-the-art results on Caltech256 with only 128dimensional bit vectors and outperforms state of the art by using longer codes. We also evaluate our method on ImageNet and show that our method outperforms state-of-the-art binary code methods on this large scale dataset. Lastly, our codes can discover a discriminative set of attributes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual local consistency hashing with discriminative projections selection

Semantic hashing is a promising way to accelerate similarity search, which designs compact binary codes for a large number of images so that semantically similar images are mapped to close codes. Retrieving similar neighbors is then simply accomplished by retrieving images that have codes within a small Hamming distance of the code of the query. However, most of the existing hashing approaches,...

متن کامل

Toward semantic attributes in dictionary learning and non-negative matrix factorization

Binary label information is widely used semantic information in discriminative dictionary learning and non-negative matrix factorization. A Discriminative Dictionary Learning (DDL) algorithm uses the label of some data samples to enhance the discriminative property of sparse signals. A discriminative Non-negative Matrix Factorization (NMF) utilizes label information in learning discriminative b...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Fast Binary Embedding via Circulant Downsampled Matrix - A Data-Independent Approach

Binary embedding of high-dimensional data aims to produce low-dimensional binary codes while preserving discriminative power. State-of-the-art methods often suffer from high computation and storage costs. We present a simple and fast embedding scheme by first downsampling N -dimensional data into M -dimensional data and then multiplying the data with an M × M circulant matrix. Our method requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012